

Газоанализаторы IGAS модификации В

Руководство по эксплуатации

ОКПД2 26.51.53.110 Код ТН ВЭД 9027 10 100 0

ЛЕВИН ФОТОНИКС Издание 1 2024 год МЦТР.00011581.001РЭ

Содержание

1. Введение	2	12. Техническое обслуживание
		12.1 Общие указания
2. Информация о безопасности	2	12.2 Внешний осмотр
2.1 Строго следуйте инструкции по применению	3	12.3 Поверка газоанализатора
2.2 Использование во взрывоопасных зонах	3	12.4 Замена сенсора
		12.5 Маркировка
3. Назначение и устройство	4	' '
3.1 Общие данные	4	13. Комплектность
3.2 Внешний вид / габаритные размеры	4	
3.3 Конструкция газоанализатора	4	14. Хранение и транспортировка
3.4 Паспортная табличка	5	14.1 Хранение газоанализатора
3.5 Информация для заказа	_5	14.2 Транспортирование газоанализатора
4. Технические характеристики	5	15. Гарантийные обязательства
4.1 Условия эксплуатации	5	•
4.2. Характеристики газоанализатора	6	16. Утилизация
4.3 Электротехнические характеристики	6	•
4.4 Описание выходных сигналов	6	Приложение A. Протокол связи Modbus
4.5 Метрологические характеристики	7	Введение
4.6 Характеристики надежности	7	газоанализаторы IGAS модификации
		TQD, TQN
5. Подготовка к работе	7	Газоанализаторы IGAS модификации В
5.1 Монтаж кабельного ввода (пример)	8	Таблица 1. Регистры Газоанализаторы IGAS
5.2 Монтаж кабельного ввода для кабеля		модификации B, TQD, TQN
с бронезащитой (пример)	8	Таблица 2. Режимы работы газоанализатора
		Таблица 3. Тип неисправности
6. Монтаж газоанализатора	9	газоанализатора
7. Подключение газоанализатора	9	Приложение Б. Список газов и диапазоны
•		измерения
8. Заземление	10	Таблица 4. Список газов и диапазон
		измерения Газоанализаторов IGAS
9. Настройка работы газоанализатора	10	модификации В с термокаталитическим
		сенсором
10. Опция релейный модуль	11	Таблица 5. Список газов и диапазон
		измерения Газоанализаторов IGAS
11. Калибровка	12	модификации В с инфракрасным сенсором
11.1 Калибровка газоанализатора	12	Таблица 6. Список газов и диапазон
11.2 Зависимость калибровки от давления		измерения Газоанализаторов IGAS
окружающей среды	12	модификации В с электрохимическим
11.3 Подготовка к калибровке	12	сенсором
11.4 Процедура калибровки	12	

1. Введение

Настоящее руководство по эксплуатации (РЭ) предназначено для изучения конструкции и принципа действия **Газоанализаторов IGAS модификации В** (далее — газоанализатор).

РЭ содержит основные технические данные, информацию по использованию, рекомендации по техническому обслуживанию и другие сведения, необходимые для правильной эксплуатации, ремонту и хранению газоанализатора.

Изготовитель оставляет за собой право вносить конструктивные изменения, связанные с улучшением технических и потребительских качеств, вследствие чего в РЭ возможны незначительные расхождения с текстом, графическим материалом на газоанализатор, не влияющие на качество, работоспособность, надежность и долговечность газоанализатора.

Газоанализаторы IGAS модификации В допущены к применению в Российской Федерации и имеют свидетельство об утверждении типа средств измерений, выданное Федеральным агентством по техническому регулированию и метрологии.

Актуальные версии разрешительных и нормативных документов, сертификатов соответствия на газоанализатор доступны по запросу в адрес предприятия изготовителя.

Настоящее руководство необходимо внимательно изучить лицам, которые несут или будут нести ответственность за установку, использование или обслуживание этого продукта.

2. Информация о безопасности

Перед началом работ с газоанализаторами IGAS модификации В убедитесь, что Руководство по эксплуатации прочитано и понято перед установкой / эксплуатацией / обслуживанием данного оборудования.

Обратите особое внимание на предупреждения и предостережения. Все предупреждения перечислены ниже и повторяются при необходимости в начале соответствующей главы (глав) настоящего Руководства по эксплуатации. Предостережения содержатся в разделах/подразделах документа, где они применяются.

ВНИМАНИЕ

Указывает на потенциально опасную ситуацию, которая, если ее не устранить, может привести к физической травме или повреждению оборудования. Это может также быть предупреждение о небезопасных методах работы

ПРЕДУПРЕЖДЕНИЕ

Дополнительная информация о том, как использовать прибор

К работе с газоанализатором допускаются лица, изучившие настоящее РЭ и прошедшие инструктаж по технике безопасности. При работе с газоанализатором должны соблюдаться правила безопасности в области охраны труда, промышленной и пожарной безопасности, установленные в федеральных регулирующих нормативно — правовых актах и внутренних требованиях, действующих на производственной площадке.

Доступ к внутренним частям газоанализатора для выполнения каких-либо работ должен осуществляться только обученным персоналом.

Корпус газоанализатора должен быть заземлен. Для этого предусмотрены внутреннее и наружное заземляющие устройства, обозначенные знаками заземления по ГОСТ 21130—75.

Запрещается подвергать газоанализатор воздействию температур, выходящих за пределы диапазона эксплуатации, указанные в РЭ. Запрещается проводить покрасочные работы рядом с работающим газоанализатором. Запрещается осуществлять мойку газоанализатора направленной струей воды под высоким давлением или горячим паром.

Запрещается осуществлять проверку работоспособности газоанализатора подручными средствами (растворителями, бензином, газом из зажигалки и т. п.). Запрещается подвергать газоанализатор, помещенный на хранение, воздействию органических растворителей или легковоспламеняющихся жидкостей. Запрещается сброс ГСО-ПГС в атмосферу рабочих помещений при настройке и поверке газоанализатора.

Гарантии, предоставленные производителем в отношении прибора, аннулируются, если газоанализатор не установлен, не используется и не обслуживается в соответствии с инструкциями в РЭ.

Ремонт газоанализатора должен проводиться только персоналом предприятия-изготовителя или лицами, уполномоченными предприятием-изготовителем на проведение таких работ.

Предприятие-изготовитель не несет гарантийных обязательств при нарушении правил эксплуатации газоанализатора.

2.1 Строго следуйте инструкции по применению

Любое использование газоанализаторов требует полного понимания и строгого соблюдения этих инструкций. Газоанализатор предназначен только для целей, указанных РЭ. Во избежание воспламенения, крышка газоанализатора должна быть плотно закрыта до тех пор, пока его питание не будет отключено. Перед снятием крышки для технического обслуживания или калибровки убедитесь, что окружающая атмосфера свободна от легковоспламеняющихся газов или паров.

Газоанализаторы должны быть защищены от экстремальных вибраций и прямых солнечных лучей в жарких средах, так как это может привести к повышению температуры газоанализатора выше установленных пределов и преждевременному выходу прибора из строя.

2.2 Использование во взрывоопасных зонах

Оборудование или компоненты, которые используются в потенциально взрывоопасных средах, должны быть испытаны и одобрены к применению в соответствующих условиях.

Модификации компонентов или использование неисправных, или неполных частей не допускаются. Операции по техническому обслуживанию и калибровке должны выполняться только квалифицированным сервисным персоналом.

Взрывозащищенность газоанализаторов обеспечивается выполнением требований ТР ТС 012/2011, ГОСТ 31610.0–2019 (IEC 60079–0:2017), а также видами взрывозащиты: взрывонепроницаемая обо-

лочка «db» по ГОСТ IEC 60079-1-2013, защита от воспламенения пыли оболочками «tb» по ГОСТ IEC 60079-31-2013.

Ex- маркировка согласно ГОСТ 31610.0—2019: 1Ex db IIC T6 Gb X, Ex tb IIIC T85°C Db X.

Знак X, стоящий в маркировке взрывозащиты, означает, что при эксплуатации газоанализаторов необходимо соблюдать следующие специальные условия применения:

- взрывонепроницаемые соединения не подлежат ремонту;
- газоанализаторы должны устанавливаться в вертикальном положении сенсором вниз;
- огнепреградитель необходимо оберегать от механических повреждений и ударов;
- присоединение внешних электрических цепей должно осуществляться с помощью взрывозащищенных кабельных вводов с маркировкой взрывозащиты согласно маркировке взрывозащиты газоанализатора и со степенью защиты от внешних воздействий не ниже IP65 и имеющие действующий сертификат ТР ТС 012/2011. Неиспользуемые отверстия должны закрываться взрывозащищенными заглушками с маркировкой взрывозащиты согласно маркировке взрывозащиты газоанализатора и степенью защиты от внешних воздействий не ниже IP65, имеющей действующий сертификат ТР ТС 012/2011.

Металлические части газоанализатора изготовлены из нержавеющей стали или алюминиевого сплава с суммарным содержанием по массе магния, титана и циркония менее 7,5%.

Газоанализаторы выполнены с высокой степенью опасности механических повреждений согласно ГОСТ 31610.0—2019.

Взрывонепроницаемость оболочки обеспечивается щелевой взрывозащитой. Параметры взрывонепроницаемых соединений соответствуют ГОСТ IEC 60079-1-2013 и указаны в чертеже средств взрывозащиты.

Резьбовые взрывонепроницаемые соединения выполнены с полями допусков 6H/6g. В резьбовых взрывонепроницаемых соединениях имеется не менее 5 полных непрерывных неповрежденных витков в зацеплении.

Взрывоустойчивость каждого газоанализатора должна проверяется путем гидравлических испытаний 1,5-кратным избыточным давлением в течение времени необходимого для осмотра, но не менее не менее (10+2) с.

 $\mathbf{2}$

В газоанализаторах устанавливается металлокерамический элемент из нержавеющей стали: максимальный размер пор — 107,8 мкм, минимальная плотность — 3,193 г/см 3 , минимальная толщина — 5 мм

В газоанализаторах должны устанавливаться взрывозащищенные кабельные вводы и взрывозащи-

щённые заглушки, имеющей действующий сертификат TP TC 012/2011.

На газоанализаторы наносится предупредительная надпись: ПРЕДУПРЕЖДЕНИЕ — ОТКРЫВАТЬ, ОТ-КЛЮЧИВ ОТ СЕТИ.

3. Назначение и устройство

3.1 Общие данные

Газоанализаторы IGAS модификации В предназначены для измерения и передачи информации о содержании горючих газов и паров горючих жидкостей (в том числе — паров нефтепродуктов), токсичных газов и кислорода в воздухе рабочей зоны, технологических газовых средах, промышленных помещений и открытых пространств промышленных объектов, трубопроводах и воздуховодах. А также подаче предупредительной сигнализации о превышении установленных пороговых значений.

Газоанализаторы IGAS модификации В соответствует требованиям ГОСТ 12.2.007.075, ГОСТ 13320—81, ГОСТ 27540—87, ГОСТ 26.011—80, ГОСТ Р 52931—2008, ГОСТ 31610.0—2019 (IEC 60079—0:2017), ГОСТ IEC 60079-1-2011, ГОСТ IEC 600791—2013, ГОСТ IEC 60079-31-2013 и выполнен в соответствии с ТУ 26.51.53-006-39289525-23 «Газоанализаторы IGAS».

Газоанализаторы IGAS модификации В предназначены для стационарной установки. Область применения –зоны согласно маркировке взрывозащиты, в которых возможно образование взрывоопасных смесей газов и паров с воздухом.

Используемые сенсоры в газоанализаторе:

- IR инфракрасный сенсор;
- ТС термокаталитический сенсор;
- ЕС-электрохимический сенсор

Метод пробоотбора — диффузионный.

Режим работы — непрерывный.

Анализируемая среда — воздух рабочей зоны по ГОСТ 12.1.005–88, а также газовая среда техпроцессов.

Газоанализатор выполнен в соответствии с ТУ 26.51.53-006-39289525-23 «Газоанализаторы IGAS».

Область применения — взрывоопасные зоны 1 или 2 по ГОСТ IEC 60079-10-1-2013 и взрывоопасные зоны классов 21 и 22 по ГОСТ 31610.10-2-2017/IEC 60079-10-2:2015 согласно маркировке взрывозащиты оборудования, ГОСТ IEC 60079-14-2013 и других нормативных документов, регламентирующих применение электрооборудования в потенциально взрывоопасных средах.

Ex-маркировка по ГОСТ 31610.0-2019: 1 Ex db IIC T6 Gb X / EX tb IIIC T85°C Db X

3.2 Внешний вид / габаритные размеры

Общий вид газоанализатора приведен на Рисунке 1.

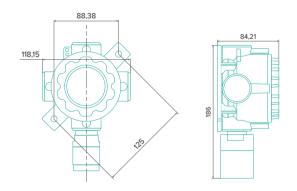


Рисунок 1 — внешний вид корпуса. Габаритные размеры Газоанализатора IGAS модификации В с электрохимическим сенсором

Габаритные размеры (ВхШхГ) Газоанализатора IGAS В с электрохимическим сенсором $^{\sim}$ 186 х 118,15 \times 84,21 мм.

3.3 Конструкция газоанализатора

Корпус газоанализатора имеет два резьбовых входа, для установки кабельных вводов или заглушки (не входит в комплект поставки). Два кабельных входа по обе стороны от верхней части корпуса газоанализатора предназначены для подключения источника питания, выходного сигнала и релейных контактов.

Нижний вход позволяет напрямую подключать гнездо сенсора.

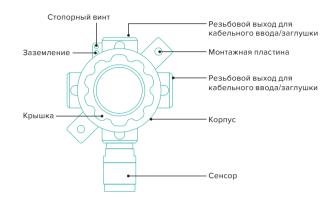


Рисунок 2. Конструкция газоанализатора

В корпус газоанализатора встроена монтажная пластина, позволяющая использовать различные варианты конфигурации монтажа.

Газоанализаторы имеют один вариант исполнения резьбы подключения — 1/2" NPT.

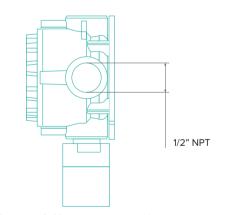


Рисунок 3. Исполнение резьбы подключения газоанализатора

3.4 Паспортная табличка

Паспортная табличка содержит данные:

- Название модели
- Технические условия
- Параметры питания
- Взрывозащита
- Год выпуска
- Серийный номер
- Контакты завода-изготовителя.

Рисунок 4. Паспортная табличка

3.5 Информация для заказа

Газоанализаторы IGAS модификации В выпускаются в различных вариантах конструктивного исполнения. Обозначение при заказе:

IGAS X1-X2-X3-X4, где:

IGAS B – модификация

X1— указывается химическая формула измеряемого компонента, согласно Приложения Б настоящего РЭ **X2**— указывается верхний предел диапазона измерений и единицы измерения, согласно Приложения Б настоящего РЭ

X3 — резьба подключения кабельных вводов: 1 (1/2" NPT)

Х4 — блок реле: 0 — нет, 1 — имеется

4. Технические характеристики

4.1 Условия эксплуатации

- Температура окружающей среды от -40°C до
- Относительная влажность окружающего воздуха от 0 до 98 % (без конденсации);
- Атмосферное давление от 84 до 106,7 кПа.

По устойчивости и прочности к воздействию температуры и влажности окружающего воздуха газоанализатор соответствует исполнению ДЗ по ГОСТ Р 52931–2008.

Газоанализатор устойчив к воздействию синусоидальных вибраций в диапазоне частот

от 10 до 150 Гц с амплитудой 0,15 мм и ускорением 19,6 м/с 2 (2g) по ГОСТ Р 52931–2008.

Газоанализатор устойчив к воздействию радиочастотного электромагнитного поля в диапазоне от 80 до 1000 МГц (излучение источников общего применения), а также в диапазоне от 800 до 960 МГц и от 1,4 до 6,0 ГГц (излучение цифровых радиотелефонов и других радиочастотных излучающих устройств) по ГОСТ Р 51317.4.3—99, напряженность электромагнитного поля до 3 В/м.

Газоанализатор соответствует требованиям к электромагнитной совместимости согласно ГОСТ Р МЭК 61326-1-2014, однако использование сотовых телефонов и радиостанций различных мощностей и диапазонов частот в непосредственной близости от газоанализатора может создавать помехи в его работе, приводя к изменению показаний и ложному срабатыванию газоанализаторов. Для большинства моделей сотовых телефонов и радиостанций малой мощности расстояние до газоанализаторов должно быть не менее 2 метров.

4.2. Характеристики газоанализатора

		-
Наименование	Значение	Примечание
Электрическое питание, постоянный ток	24 B	
Потребляемая мощность (без учета нагревателя), не более	2,5 Вт	
Тип выходного сигнала	RS485	Modbus RTU, входит в базовую ком- плектацию
Токовый выходной сигнал	4-20 мА	входит в базовую ком- плектацию
Реле	3 x (1A 30VDC, 0.5A 125VAC, 0.3A 80VDC)	опционально
Ех-маркировка по ГОСТ 31610.0-2019	1Ex db IIC T6 Gb X Ex tb IIIC T85°C Db X EX tb IIIC T85°C Db	
Степень защиты	IP65	

Периодичность поверки: IR – инфракрасный сен- cop;	1год
TC – термокаталитический сенсор; EC — электрохимический	1год
сенсор	1год
Средняя наработка на отказ, не менее часов	35000
Средний срок службы (без учета срока службы сенсора), лет	12
Ожидаемый срок службы сенсора (лет)	
- инфракрасный сенсор - термокаталитический	более 5
сенсор - электрохимический	4 -5 и более
сенсор	более 2
Масса с сенсором алюминиевый корпус	1,4 кг

В составе газоанализатора драгоценных материалов (драгоценных металлов и камней) не содержится.

4.3 Электротехнические характеристики

Электрическое питание, постоянный ток напряжением 24 В (номинально).

Максимальная потребляемая мощность (без учета нагревателя), не более 2,5 Вт.

4.4 Описание выходных сигналов

Унифицированный аналоговый выходной сигнал «Токовая петля 4—20 мА»;

В газоанализаторах с цифровым выходом сигнал передается средствами протокола MODBUS RTU по каналу RS-485;

В газоанализаторах с релейным выходом («сухой контакт»), реле неисправности срабатывает при отсутствии электропитания, реле пороговых значений срабатывают при достижения порогового значения (в случае кислорода — при снижении ниже допустимого уровня и при превышении допустимого уровня) для управления внешними звуковыми, светосигнальными и иными устройствами (клапанами, вентиляцией и т. п.).

4.5 Метрологические характеристики

Газоанализаторы с электрохимическими сенсорами могут обеспечивать измерения объемной доли или массовой концентрации газа. Пересчет значений объёмной доли, ppm (или млн $^{-1}$), в массовую концентрацию, мг/м 3 , проводится по формуле:

$$C_{M\Gamma/M^3} = \frac{M \cdot C_{ppm}}{R \cdot T/P}$$

где $C_{_{M\Gamma/M^3}}$ — значение концентрации газа, мг/м³;

 $C_{_{nnm}}$ — значение концентрации газа ppm;

М — молярная масса газа;

R — универсальная газовая постоянная, равная 8.314472:

Т — температура, К.

Для нормальных условий (T= 293,15 K, P=101,325 кПА) формула имеет вид:

$$C_{M\Gamma/M^3} = C_{nnm} * K,$$

где K — коэффициент пересчета при нормальных условиях.

Допускаемая дополнительная погрешность, вызванная изменением температуры окружающей среды на каждые 10 °C, в долях от предела основной погрешности — $\pm 0,2$.

Время установления выходного сигнала зависит от температуры окружающей среды и измеряемого компонента. Предел допускаемого интервала времени работы газоанализатора без корректировки выходного сигнала — не менее 6 месяцев.

Перечень измеряемых газов указан в Приложении Б. Остальные метрологические характеристики, такие как: погрешность измерения, время установления показаний и т. д., указаны в описании типа средства измерения на газоанализатор.

4.6 Характеристики надежности

Средняя наработка на отказ газоанализатора, не менее часов.

 С инфракрасным сенсором
 70 000

 С термокаталитическим сенсором
 35 000

 С электрохимическим сенсором
 35 000

Критерий отказа — неустранимый выход основной погрешности за допустимые пределы, невыполнение функционального назначения.

Термокаталитический сенсор горючих газов, изготовлен с использованием пеллисторов, которые теряют чувствительность в присутствии ядов или ингибиторов, например силиконов, сульфидов, хлора, свинца или галогенированных углеводородов. Мембраны сенсоров устойчивы к воздействию ядов, что позволяет максимально продлить срок службы термокаталитического сенсора. Срок службы термокаталитического сенсора, в зависимости от наличия ядов/ингибиторов, обычно составляет 48–60 месяцев. Инфракрасный сенсор горючих газов не подвержен воздействию указанных ядов и имеет более длительный срок службы.

Срок службы сенсора токсичных газов, изготовленного на основе электрохимического компонента, зависит от применения, частоты и степени воздействия газа. При нормальных условиях (визуальный осмотр в течение 3 месяцев и проверка/повторная калибровка в течение 6 месяцев) ожидаемый срок службы сенсоров на кислород и других токсичных веществ, составляет не менее 24 месяцев.

Ожидаемый срок службы газоанализатора в условиях эксплуатации, приведенных в настоящем РЭ—

Ожидаемый срок службы сенсора — более 2 лет..

5. Подготовка к работе

К работе с газоанализатором допускаются лица, изучившие настоящее РЭ и прошедшие инструктаж по технике безопасности.

Запрещается эксплуатировать газоанализатор, имеющий механические повреждения корпуса или повреждение пломб.

Доступ к внутренним частям газоанализатора для выполнения каких-либо работ должен осуществляться только обученным персоналом

После распаковывания газоанализатора необходимо проверить комплектность, наличие пломб, маркировки взрывозащиты, убедиться в отсутствии механических повреждений.

Если газоанализатор находился в транспортной упаковке при отрицательной температуре, следует выдержать его в выключенном состоянии в нормальных условиях не менее 8 ч.

При монтаже кабельных вводов необходимо установить их в соответствующие отверстия в корпусе газоанализатора.

При повторном монтаже кабельного ввода требуется обязательная замена всех уплотнителей согласно технической документации на данный кабельный ввод.

5.1 Монтаж кабельного ввода (пример)

Закрепить входной элемент кабельного ввода в соответствующие отверстия в корпусе газоанализатора.

Затянуть вручную, затем закрутить с помощью гаечного ключа. Усилие затяжки кабельного ввода при монтаже 32,5 Hм.

Кабельный вводЗадняя гайка Коннектор Входной элемент

Смонтированный кабельный ввод и кабель

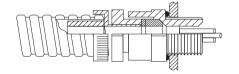


Рисунок 5. Смонтированный кабельный ввод и кабель

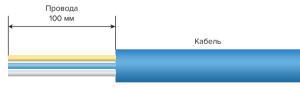


Рисунок 6 — Подготовка кабеля

Вставить кабель в кабельный ввод, протягивая его через заднюю гайку и входной элемент. Расположить кабель должным образом.

При затяжке кабельного ввода уплотнение должно зажимать внешнюю оболочку кабеля. Закрепить металлорукав на коннекторе. Вкручивать коннектор внутрь металлорукава, пока он полностью не закрепиться и замкнется.

Соединить заднюю гайку с входным элементом. Убедиться, что уплотнение плотно соединено с оболочкой кабеля. Далее вкрутить заднюю гайку во входной элемент на 2 оборота, придерживая ка-

бель, чтобы предотвратить его скручивание во время монтажа.

5.2 Монтаж кабельного ввода для кабеля с бронезащитой (пример)

Бронированный кабельный ввод

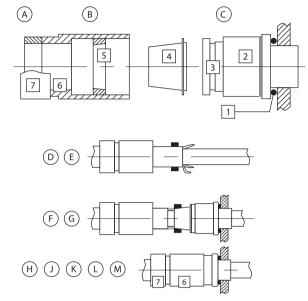


Рисунок 7 — подготовка кабельного ввода для кабеля с бронезашитой.

- А. Разъединить ввод, как показано на Рисунке 7.
- **В.** Удалить кольцо 1, если оно не нужно, при необходимости установить уплотнительную шайбу.
- **С.** Закрепить деталь 2, не превышая максимальное усилие затяжки (32,5 Hm).
- **D.** Надеть на кабель детали 5, 6 и 7, как показано на Рисунке 7.
- **E.** Подготовить кабель согласно Рисунку 8. Снять внешнюю оболочку и броню на длину, достаточную для монтажа. Оставить броню необходимой длины.

Рисунок 8 — Подготовка кабеля с бронезащитой.

- **F.** Надеть деталь 4 на внутреннюю оболочку и под броню. Надвинуть деталь 5 на открытое армирование.
- **G.** Вставить кабель через деталь 2. Ввинтить деталь 3
- **H.** При необходимости на всех стадиях использовать второй гаечный ключ на детали 2, чтобы избежать срыва резьбы оболочки.

- **J.** Подтянуть деталь 6 к детали 2 с необходимым усилием 15 Hм.
- **К.** Ослабить деталь 6, чтобы визуально убедиться, что армирование закреплено надежно.
- **L.** Снова затянуть деталь 6 с необходимым усилием 32.5 Hм.
- **М.** Вручную затянуть деталь 7, чтобы прижать уплотнение к кабелю

После выполнения монтажа не допускается демонтировать ввод, за исключением случаев специального осмотра.

Ввод не подлежит техническому обслуживанию, запасные части не поставляются.

Части ввода не являются взаимозаменяемыми по отношению к любой другой конструкции.

При использовании деталей разных производителей сертификат будет считаться недействительным.

6. Монтаж газоанализатора

Монтаж газоанализатора на объекте должен производиться согласно ГОСТа, с учетом молярной массы контролируемого газа. Газоанализаторы должны быть заземлены. Винт заземления находится с внешней стороны корпуса и обозначен знаком

Газоанализатор следует располагать рядом с местом возможной утечки.

Для измерения газов, которые легче воздуха, газоанализатор следует располагать выше возможного места утечки.

Для измерения газов, которые тяжелее воздуха, следует располагать газоанализатор ниже защищаемой зоны.

Рекомендуется располагать газоанализатор в местах с хорошей циркуляцией воздуха. Ограничение

естественного воздушного потока может стать причиной замедленного срабатывания. Для корректной работы газоанализатора, скорость движения воздуха в местах его установки должна находиться в пределах от 0.2 до 6.0 м/с.

Рекомендуется изолировать газоанализатор от вибрации, прямого солнечного света и обеспечить температурный режим в соответствии с характеристиками газоанализатора.

Рекомендуется устанавливать газоанализатор в местах с возможностью доступа для его обслуживания.

Газоанализатор имеет независимую монтажную пластину, состоящую из двух монтажных отверстий и двух отверстий для крепления к корпусу газоанализатора. Монтажная пластина может регулироваться по двум диагоналям на корпусе газоанализатора.

7. Подключение газоанализатора

К работе с газоанализатором допускаются лица, изучившие настоящее $P \ni u$ прошедшие инструктаж по технике безопасности.

Доступ к внутренним частям газоанализатора для выполнения каких-либо работ должен осуществляться только обученным персоналом.

При работе с газоанализатором должны соблюдаться правила безопасности в области охраны труда, промышленной и пожарной безопасности, установленные в федеральных регулирующих нормативно — правовых актах и внутренних требованиях, действующих на производственной плошадке.

Монтаж и подключение газоанализатора должны производиться при отключенном напряжении питания.

Корпус газоанализатора должен быть заземлен. Для заземления газоанализатора предусмотрены внутреннее и наружное заземляющие устройства, и знаки заземления по ГОСТ 21130—75.

Запрещается подвергать газоанализатор воздействию температур, выходящих за пределы указанных диапазонов эксплуатации.

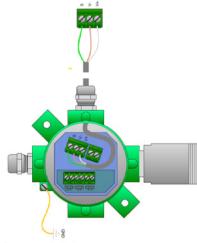


Рисунок 9 — Схема подключения газоанализатора

8. Заземление

Для ограничения влияния радиочастотных помех и обеспечения электромагнитной совместимости необходимо выполнить правильное заземление.

При применении экранированного кабеля экран, охватывающий проводники линии, защищает их от паразитных емкостных связей и внешних магнитных полей.

Этот экран должен быть подключен к заземляющему винту только в одной крайней точке со стороны газоанализатора.

Экран с другого конца, со стороны контроллера, должен быть оконцован или подключен к свободному выводу.

Заземление экрана с двух сторон недопустимо: из-за разности потенциалов могут возникать токи, которые вызовут неправильные показания или ложное срабатывание газоанализатора.

В целях обеспечения защитного заземления, согласно главе 7.3 ПУЭ, корпус газоанализатора должен быть заземлен. Для этого на нём предусмотрен внешний винт заземления и знак заземления по ГОСТ 21130—75.

В качестве заземляющих проводников должны быть использованы проводники, специально предназначенные для этой цели.

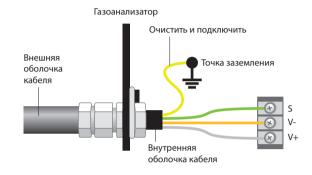


Рисунок 10 — Схема заземления газоанализатора

9. Настройка работы газоанализатора

Токовой выходной сигнал 4-20 мА стандартно сконфигурирован следующим образом:

Стандартная конфигурация токового выходного сигнала 4-20 мА

Значение по умолчанию	Описание
2,0 мА	Ошибка газоанализатора
2,0 мА	Прогрев газоанализатора
3,0 мА	Режим калибровки
От 4,0 мА до 20,0 мА	Нормальный режим измерения
22,0 mA	Превышение диапазона измерения

Основная плата газоанализатора и детали подключения.

Рисунок 11 — Материнская плата

Порт	Описание
V +	Потребляемое напряжение (+) 1224 B
V -	потребляемое напряжение (-) 1224 B
S	текущий выходной сигнал (4 мА — 20 мА)
Α	RS485 выходной порт последовательной связи A
В	RS485 выходной порт последовательной связи В

Газоанализатор имеет встроенный интерфейс последовательной связи RS 485 протокол Modbus RTU

Адрес газоанализатора в сети RS 485 Modbus RTU устанавливается с помощью ручного терминала настройки. Газоанализаторам можно назначить использование адресов от 1 до 247 (включая 247). Нулевой адрес (0) не может использоваться.

Последний газоанализатор в цепи RS 485 должен быть оснащен терминальным резистором 120 Ом.

Резистор уже установлен на плате, но не задействован.

Для того, чтобы задействовать терминальный резистор, пользователю необходимо установить перемычку согласно Рисунку 12.

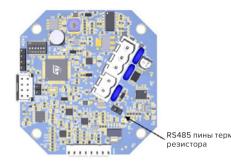


Рисунок 12 — Терминальный резистор на материнской плате

10. Опция релейный модуль

Опциональная релейная плата имеет три релейных выхода, каждое реле имеет три контакта.

Рисунок 13 — Опциональная релейная плата

Порт	Наименование	Положение контакта
Fault	Реле неисправности газоанализатора	NO
AL1	Реле первого порога	NO
AL2	Реле второго порога	NO

В газоанализаторе используется реле с перекидным контактом. .

NO — нормально открытый

NC — нормально закрытый

Положение перекидного контакта может быть настроено установкой перемычки, как показано ниже:

нормально открытый (NO) пормально закрытый (NC)

Пороги сигнализации 1 и 2 так же настраивается с помощью установки перемычки на пины SW1 и SW2:

SW1	SW2	1 порог (% от диапазона измерения)	2 порог (% от диапазона измерения)
Открытый	Открытый	10%	15%
Открытый	Закрытый	10%	20%
Закрытый	Закрытый	20%	25%
Закрытый	Открытый	20%	40%

Для газоанализатора на кислород, так как он всегда присутствует в атмосфере, используется другие значения:

SW1	SW2	1 порог	2 порог
Открытый	Открытый	19%	23%
Открытый	Закрытый	19%	22%
Закрытый	Закрытый	18%	22%
Закрытый Открытый		18%	23%

11. Калибровка

11.1 Калибровка газоанализатора

Рекомендуется периодически проводить калибровку для обеспечения корректной работы.

Калибровка газоанализатора включает в себя два этапа: настройку нуля и чувствительности. Каждый шаг можно выполнить самостоятельно.

Для корректной работы прибора рекомендуется выполнять оба этапа калибровки.

Перед калибровкой газоанализатор должен быть включен и стабилизирован в течение 4 часов.

Во время фаз калибровки токовый выходной сигнал с равен 3 мА, чтобы избежать ложных тревог.

Для калибровки газоанализатора используйте газовый баллон с соответствующей поверочной газовой смесью, согласно методике поверки на газоанализатор, редуктор и адаптер для калибровки, ручной терминал.

11.2 Зависимость калибровки от давления окружающей среды

Газоанализатор обеспечивает измерительный сигнал, который зависит от парциального давления компоненты измеряемого газа.

Изменения атмосферного давления, или абсолютного давления в зависимости от высоты места работы могут стать причиной изменения парциального давления. Рі = текущее давление в измерительной кювете.

Реальное значение = измеренное значение х Рі / 1013

Предприятие — изготовитель рекомендует выполнять калибровку с частотой от 3 до 6 месяцев, в зависимости от условий эксплуатации прибора.

Если газоанализатор работает полный календарный год без выключения и снятия с объекта, пользователю рекомендуется разработать собственную программу калибровки, которая соответствует условиям использования газоанализатора.

Большинству пользователей подойдет вариант калибровки с частотой 1 раз в 3 месяца.

11.3 Подготовка к калибровке

Для обеспечения правильной работы газоанализатора рекомендуется проводить периодическую калибровку. Калибровка газоанализатора производится по двум точкам с помощью нулевого и эталонного газов. Калибровку по каждому газу можно выполнять независимо.

Для получения максимально корректных результатов, необходимо калибровать газоанализатор по двум точкам диапазона измерения. Газоанализатор должен быть включен как минимум за 4 часа до калибровки для стабилизации его работы.

При калибровке газоанализатор автоматически переключается в режим блокировки (сигнал по умолчанию — 3 мА) во избежание ложных срабатываний. В качестве нулевого газа для газоанализаторов с инфракрасным чувствительным элементом используется N_2 , для прочих газоанализаторов — воздух (смесь O_2 и N_2) с нулевым содержанием определяемого газа. Для обеспечения достаточной точности калибровки чувствительности газоанализатора, рекомендуется использовать в качестве эталонного газа смесь с содержанием измеряемого компонента с концентрацией 25-75% от диапазона измерения сенсора.

11.4 Процедура калибровки

Для выполнения процедуры калибровки необходим ручной терминал (поставляется отдельно).

12. Техническое обслуживание

Доступ к внутренним частям газоанализатора для выполнения каких-либо работ должен осуществляться только обученным персоналом

К работе с газоанализатором допускаются лица, изучившие настоящее РЭ и прошедшие инструктаж по технике безопасности. Запрещается эксплуатировать газоанализатор, имеющий механические повреждения корпуса или повреждение пломб.

Корпус газоанализатора должен быть заземлен. Для заземления газоанализатора предусмотрены внутреннее и наружное заземляющие устройства, и знаки заземления по ГОСТ 2113075.

Ремонт газоанализатора должен проводиться только персоналом предприятия — изготовителя или лицами, уполномоченными предприятием-изготовителем для проведения ремонтных работ.

Запрещается подвергать газоанализатор воздействию температур, выходящих за пределы указанных диапазонов эксплуатации.

Ремонт газоанализатора на месте его эксплуатации не предусмотрен.

12.1 Общие указания

Техническое обслуживание (TO) производится с целью обеспечения нормальной работы газоанализатора в течение срока его эксплуатации.

ТО должно проводиться подготовленными лицами, знающими правила техники безопасности при работе с электроустановками во взрывоопасных зонах, изучившими настоящее РЭ, аттестованными и допущенными к работе с этими изделиями

Виды и сроки проведения технического обслужива-

- внешний осмотр газоанализатора не менее
 1 раза в 6 месяцев;
- периодическая проверка работоспособности не менее 1 раза в 12 месяцев;
- замена сенсора по мере необходимости.

Внешний осмотр газоанализатора и периодическая проверка его работоспособности проводятся на месте эксплуатации.

Частота калибровки газоанализатора в значительной степени зависит от условий его эксплуатации.

В большинстве случаев калибровку рекомендуется выполнять с частотой от 3 до 6 месяцев.

Если газоанализатор работает полный календарный год без выключения и снятия с объекта, пользователю рекомендуется разработать собственную

программу калибровки, которая соответствует условиям эксплуатации газоанализатора.

Большинству пользователей подойдет вариант калибровки с частотой 1 раз в 3 месяца.

В случае отравления газоанализатора газом высокой концентрации на предприятии вследствие утечки, либо возникновения экстремальных окружающих температур, рекомендуется выполнить внеочередную калибровку, чтобы избежать влияния данных факторов на показания газоанализатора. Если пользователь в течение года ни разу не проводил калибровку газоанализатора, то есть не выполнял требования раздела 12 настоящего РЭ, то претензии о гарантийном ремонте или замене газоанализатора предприятием-изготовителем не принимаются.

12.2 Внешний осмотр

При проведении внешнего осмотра необходимо убедиться в отсутствии механических повреждений газоанализатора и загрязнений, которые могут повлиять на работоспособность прибора. При необходимости удалить загрязнения влажной чистой ветошью.

Использование спирта, ацетона и других растворителей в качестве очищающих средств – запрещено!

12.3 Поверка газоанализатора

Газоанализаторы до ввода в эксплуатацию и после ремонта подлежат первичной поверке, в процессе эксплуатации — периодической. Периодичность поверки зависит от типа сенсора и указана в описании типа средства измерений.

Поверку производить согласно методики поверки

Допускается проводить поверку на месте эксплуатации прибора, в рабочем положении при соблюдении следующих условий:

- температура окружающего воздуха, °C: 20±5;
- относительная влажность, %: от 30 до 80;
- атмосферное давление, кПа: от 84 до 106,7;
- баллоны с ПГС должны быть выдержаны при температуре 20±5°С не менее 24 ч;
- механические воздействия, наличие пыли, агрессивных примесей, внешние электрические и магнитные поля необходимо исключить, т. к. эти факторы могут влиять на точность в процессе проведения поверки.

12.4 Замена сенсора

Сенсорный модуль представляет собой сменную часть. В случае выхода показаний газоанализатора за пределы допускаемой погрешности и невозможности корректировки показаний путем калибровки, а также в случае выхода сенсора из строя он подлежит замене.

Для замены сенсора необходимо выполнить следующие действия:

- выключить питание газоанализатора;
- ослабить стопорный винт корпуса сенсора, используя шестигранный ключ (в комплект не входит):
- снять крышку, закрывающую сенсор;
- проверить металлический фильтр, если он блокирует забор пробы, заменить его или почистить;
- аккуратно извлечь сенсор;
- установить новый сенсор в разъем;
- произвести сборку в обратном порядке.

После замены сенсора необходимо провести калибровку согласно РЭ и поверку в соответствии с методикой поверки

12.5 Маркировка

Маркировка газоанализатора содержит следующую информацию:

- наименование и товарный знак предприятия изготовителя:
- условное обозначение газоанализатора;
- год изготовления;
- заводской номер газоанализатора по системе нумерации предприятия — изготовителя;
- Ex- маркировка по ГОСТ 31610.0-2019
- маркировка взрывозащиты;
- знак взрывобезопасности в соответствии с ТР ТС 012/2011;
- степень защиты оболочки IP;
- температура окружающей среды при эксплуатации;
- номер сертификата соответствия и наименование органа по сертификации;
- единый знак обращения продукции на рынке Евразийского экономического союза, утвержденный Решением Комиссии Таможенного союза от 15.07.2011 № 711, при условии соответствия оборудования требованиям всех Технических регламентов Таможенного союза и Технических регламентов ЕАЭС, действие которых распространяется на заявленное оборудование;

Также на корпусе газоанализатора имеется следующая информация:

- знак заземления;
- предупредительная надпись «ПРЕДУПРЕЖДЕ-НИЕ — Открывать, отключив от сети».

13. Комплектность

Наименование	Количество, шт.
Газоанализатор	1
Паспорт	1
Руководство по эксплуатации	1
Методика поверки	1
Упаковка	1

Методика поверки поставляется в количестве одного экземпляра на партию из 10 газоанализаторов, но не менее одного экземпляра на поставку

14. Хранение и транспортировка

14.1 Хранение газоанализатора

Газоанализатор и эксплуатационная документация уложены в коробку из картона. Способ упаковывания, подготовка к упаковыванию, транспортная тара и материалы, применяемые при упаковке, порядок

размещения соответствуют чертежам предприятия- изготовителя.

Газоанализаторы в упаковке предприятия — изготовителя должны храниться на складах поставщика и потребителя в условиях хранения 1 по ГОСТ

15150-69 (отапливаемые склады и хранилища, с температурой воздуха от плюс 5 до плюс 40 °C).

При хранении на складах газоанализаторы следует располагать на стеллажах.

При вводе в эксплуатацию газоанализатора, который хранился на складе более 12 месяцев, необходимо произвести установку нуля и настройку чувствительности в составе системы

После распаковывания газоанализатора, условия хранения не должны отличаться от перечисленных выше. В атмосфере помещения для хранения не должно содержаться вредных примесей, вызывающих коррозию.

Расстояние между отопительными устройствами хранилищ и газоанализатором должно быть не менее 0,5 м. Назначенный срок хранения — 1 год (в упаковке предприятия-изготовителя). Исчисление назначенного срока хранения газоанализатора

начинается с даты приемки, указанной в свидетельстве о приемке.

14.2 Транспортирование газоанализатора

Условия транспортирования — по условиям хранения 5 (ОЖ4) по ГОСТ 15150-69. Диапазон температур от минус 50 до плюс 50 °С.

Транспортирование газоанализаторов должно производиться авиа, железнодорожным, водным и автомобильным видами транспорта в закрытых транспортных средствах, а также в отапливаемых герметизированных отсеках самолетов в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта.

Во время транспортировки и погрузочно-разгрузочных работ упакованные газоанализаторы не должны подвергаться резким ударам и воздействию атмосферных осадков.

15. Гарантийные обязательства

Гарантийный срок эксплуатации на электронику газоанализатора (за исключением сенсора) 36 месяцев со дня продажи. Гарантия на установленный сенсор — 12 месяцев. Гарантийные обязательства аннулируются при несоблюдении условий эксплуатации и хранения.

Исчисление гарантийного срока эксплуатации газоанализатора начинается с даты отгрузки потребителю. Предприятие изготовитель: ООО «Левин Фотоникс»

Адрес: 141190, Московская область, г. о. Фрязино, тер. Восточная Заводская Промышленная д. 16 помещение 394.

Тел +7 495 984-04-37 web: levinphotonics.com email: hello@levinphotonics.com

16. Утилизация

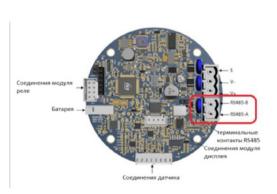
В составе газоанализатора драгоценных материалов (драгоценных металлов и камней) не содержится.

После истечения срока службы газоанализаторы утилизируются экологически безопасным способом. Утилизация должна проводиться в соответствии с местными нормативными актами по организации сбора и удаления отходов и законодательством об охране окружающей среды.

ı-

Приложение A. Протокол связи Modbus

Газоанализаторы IGAS модификации В

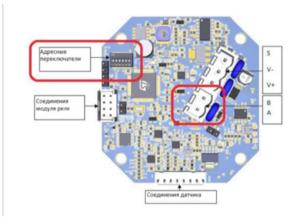

Введение

Газоанализаторы IGAS модификации B, TQD, TQN поддерживающие протокол связи Modbus RTU: Параметры Modbus RTU по умолчанию для модификации B, TQD, TQN:

- Скорость передачи: 9600Адрес ведомого устройства: 1
- Паритет: НетСтоповые биты: 1

Параметры скорости передачи и адреса ведомого устройства настраиваются с помощью программного обеспечения конфигуратора.

Газоанализаторы IGAS модификации TQD, TQN



Идентификатор ведомого устройства настраивается с помощью дисплея (портативный терминал для моделей без дисплея) или программного обеспечения PDM. Чтобы изменить идентификатор ведомого устройства с помощью дисплея, следуйте приведенной ниже схеме.

Для параметра «RS485 Connected» должно быть установлено значение «ДА», если есть постоянное соединение Modbus с газоанализаторами. Если установлено значение «ДА», газоанализатор будет выдавать сообщение об ошибке при отсутствии связи по протоколу Modbus. При установке на «НЕТ» газоанализатор не будет выдавать сообщение об ошибке.

Газоанализаторы IGAS модификации В

Идентификатор ведомого устройства настраивается с помощью DIP-переключателей или программного обеспечения PDM. Обратите внимание, что адресация через DIP-переключатели ограничена от 1 до 31. Для программной адресации установите все DIP-переключатели в выключенное положение. Таким образом, будут доступны адреса от 1 до 127.

Таблица 1. Регистры Газоанализаторы IGAS модификации B, TQD, TQN

Номер регистра в деся- тичной системе	Номер регистра в 16-ти- ричной системе	Название регистра	Описание	Старший байт	Младший байт
0	0x00	REG TYPE REG	Модель устройства (см. 0х33)		
1	0x01	REG VALUE REG	Значение концентрации газа (см. 0x06)		
2	0x02	REG STATUS REG	Код состояния неисправности (см. 0x19)		
3	0x03	REG MAX VALUE	Максимальный диапазон измерения (см. 0х23)		
4	0x04	REG UNIT	Единица измерения (см. 0x22)		
5	0x05	DEVICE STATUS REG	Состояние устройства	Режимы работы датчика (см. Табли- цу В)	Тип неисправности датчика (см. Таблицу С)
6	0x06	GAS CONCT VALUE REG	Значение концентрации газа	Значение концентра (0x06)/ регистр (0x2	
7	0x07	GAS CONCT PERCENT REG	Концентрация газа в процентах	Концентрация газа в	з процентах
8	0x08	L TWA VALUE REG	CB3 - 15-минутное средневзвешен- ное значение по времени	CB3 - 15-минутное ср значение по времен	
9	0x09	S TWA VALUE REG	CB3 - 1-минутное средневзвешен- ное значение по времени	СВЗ - 1-минутное сре чение по времени	едневзвешенное зна-
10	0x0A	READ ADC VALUE REG	Счетчик показаний АЦП	Снять показания АЦ	IП (счетчик)
11	0x0B	SENSOR TEMP REG	Датчик температуры	Значение датчика температуры	
12	0x0C	IN VOL VALUE REG	Входное напряжение	Значение входного напряжения = считывание / 10	
13	0x0D	CURRENT OUTPUT REG	Выходной ток (мА)	Выходной ток (мА) =	считывание / 100
14	0x0E	CUR LINE RESISTOR REG	Линейный резистор	Линейный резистор	
15	0x0F	DATE YEAR MON REG	Год (последние две цифры)	Год (2022 для 22)	Месяц
16	0x10	DATE DAY REG	День	День	
17	0x11	TIME HOUR MIN REG	Время(часы и минуты)	Часы	Минуты
18	0x12	TIME SEC REG	Время(секунды)	Секунды	
19	0x13	TEST STATUS REG	Регистрация самопроверки	Регистрация самопр	ооверки
21	0x15	UNUSED REG	Диапазон настройки времени	Диапазон настройки ние / 2	и времени = считыва-
22	0x16	CALIBRATION TIME REG	Время калибровки	Время калибровки =	- считывание / 2
23	0x17	SENSOR VOL VALUE REG	Уровень напряжения датчика	Значение напряжен вание / 1000	ия датчика (v)= считы-
24	0x18	LAMP VOL VALUE REG	Уровень напряжения лампы	Значение напряжен вание / 1000	ия лампы (V)= считы-
25	0x19	FAULT STATUS REG	Код неисправности	Код неисправности	
26	0x1A	ALARM1 CONFIG REG	Задержка выключения сигнала тревоги 1	Задержка выклю- чения сигнала тревоги 1	Авто сброс сигнала тревоги 1=> 1. (бит 1-вкл. О-выкл.) Реле сигнала тревоги 1=> 2. бит (1-включено 0-обесточено) Направление сигнала тревоги 1 => 3.бит (1-понижение 0-возрастание)

Номер регистра в деся- тичной системе	Номер регистра в 16-ти- ричной системе	Название регистра	Описание	Старший байт	Младший байт
27	0x1B	ALARM2 CONFIG REG	Задержка выключения сигнала тревоги 2	Задержка выклю- чения сигнала тревоги 2	Авто сброс сигнала тревоги 2 => 1 бит Реле сигнала тре- воги 2 => 2. бит На- правление сигнала тревоги2 => 3.бит
28	0x1C	ALARM3 CONFIG REG	Задержка выключения сигнала тревоги 3	Задержка выклю- чения сигнала тревоги 3	Авто сброс сигнала тревоги 3 => 0 бит Реле сигнала тревоги 3 => 1. бит Направление сигнала тревоги 3 => 2.бит
29	0x1D	ANALOG OUT LEV1 REG	Неисправность аналогового выхода уровня 1	Неисправность аналогового выхода уровня 1= считывание / 10	Перегрев аналогового выхода уровня 1= считывание / 10
30	0x1E	ANALOG OUT LEV2 REG	Калибровка аналогового выхода уровня 2	Калибровка ана- логового выхода уровня 2 = считы- вание / 10	Блокировка ана- логового выхода уровня 2 = считыва- ние / 10
31	0x1F	ANALOG OUT LEV3 REG	Аналоговый выход уровня 3 Состояние превышения диапазона	Аналоговый выход уровня 3 Состоя- ние превышения диапазона = считы- вание / 10	Аналоговый выход уровня З Ноль = считывание / 10
32	0x20	SENSOR TYPE REG	Тип сенсора	ИНФРАКРАСНЫЙ ДА 17782, ДАТЧИК ЕС = КАТАЛИТИЧЕСКИЙ , 25890, ПОЛУПРОВС = 0×1906 / 6406, ДАТ 14164	0x8844 / 34884, ДАТЧИК = 0x6522 / ОДНИКОВЫЙ ДАТЧИК
33	0x21	GAS TYPE REG	Тип газа	Тип газа (см. Табли- цу D)	
34	0x22	MEASR UNIT REG	Единица измерения (десятичная)	Единица измере- ния	PPM =2, V OL =3, LEL =4, PPB =5
35	0x23	GAS CONCT RANGE REG	Максимальный диапазон измерения	Максимальный диап считывание / регист циент масштабирова	рация (0х29-коэффи-
36	0x24	GAS LEL VALUE REG	Максимальный объем измерения	Максимальный объе вание / 10	ем измерения = считы-
37	0x25	CAL GAS TYPE REG	Относительная чувствительность	Относительная чувс	твительность
38	0x26	ALARM1 LEVEL REG	Уровень сигнала тревоги 1	Уровень сигнала тревоги 1 = считывание . 0x29 регистрация (коэффициент масштабирования)	
39	0x27	ALARM2 LEVEL REG	Уровень сигнала тревоги 2	Уровень сигнала тревоги 2 = считывание / 0x29 регистрация (коэффициент масшта бирования)	
40	0x28	ALARM3 LEVEL REG	Уровень сигнала тревоги 3	Уровень сигнала тревоги 3 = считывание / 0х29 регистрация (коэффициент масшта бирования)	
41	0x29	SCALING FACTOR REG	Коэффициент масштабирования	Коэффициент масшт	габирования
42	0x2A	IR PEAK RD DELAY REG	Инфракрасная пиковая задержка считывания	Инфракрасная пико вания	вая задержка считы-
43	0x2B	IR DEEP RD DELAY REG	Инфракрасная задержка глубины считывания	Инфракрасная заде вания	ржка глубины считы-
44	0x2C	IR LAMP PERIOD REG	Период инфракрасной лампы	Период инфракрасн	юй лампы
45	0x2D	FW VERSION 1 REG	Детализация уровня прошивки	read.xx.xx	xx.read.xx
			<u> </u>		

Номер регистра в деся- тичной системе	Номер регистра в 16-ти- ричной системе	Название регистра	Описание	Старший байт	Младший байт
46	0x2E	FW VERSION 2 REG	Детализация уровня прошивки		xx.xx.read
47	0x2F	FW DATE 1 REG	Дата прошивки (год/месяц)	FW DATE = Год	FW DATE => месяц
48	0x30	FW DATE 2 REG	Дата прошивки (День)		FW DATE => день
49	0x31	DISPLAY LANGUAGE	Язык дисплея (десятичный)	АНГЛИЙСКИЙ = 0, Т СКИЙ = 2, БЕЗ ЯЗЫК	
50	0x32	BAUD RATE REG	Скорость связи	BAUD RATE	
51	0x33	DET MODEL REG	Модель устройства	G ENERIC = 0x5202, I 0x5420, PPS= 0x583' 0x5893, PC3= 0x568 0x4934, AN2= 0x473'	I, PE= 0x5810, PEM= 5, SOMA= 0x5324, PX=
52	0x34	MAN ID NUMB1 2 REG	Идентификатор производителя	Идентификатор производителя => 1. символ Симв. (считывание)	Идентификатор производителя => 2. символ Симв. (считывание)
53	0x35	MAN ID NUMB3 4 REG	Идентификатор производителя	Идентификатор производителя => 3. символ Симв. (считывание)	Идентификатор производителя => 4. символ Симв. (считывание)
54	0x36	MAN ID NUMB5 6 REG	Идентификатор производителя	Идентификатор производителя => 5. символ Симв. (считывание)	Идентификатор производителя => 6. символ Симв. (считывание)
55	0x37	MAN ID NUMB7 8 REG	Идентификатор производителя	Идентификатор производителя => 7. символ Симв. (считывание)	Идентификатор производителя => 8. символ Симв. (считывание)
56	0x38	BASE SER NUMB1 2 REG	Базовый серийный номер	Базовый серийный номер => 1. символ Симв. (считывание)	Базовый серийный номер => 2. символ Симв. (считывание)
57	0x39	BASE SER NUMB3 4 REG	Базовый серийный номер	Базовый серийный номер => 3. символ Симв. (считывание)	Базовый серийный номер => 4. символ Симв. (считывание)
58	0x3A	BASE SER NUMB5 6 REG	Базовый серийный номер	Базовый серийный номер => 5. символ Симв. (считывание)	Базовый серийный номер => 6. символ Симв. (считывание)
59	0x3B	BASE SER NUMB7 8 REG	Базовый серийный номер	Базовый серийный номер => 7. символ Симв. (считывание)	Базовый серийный номер => 8. символ Симв. (считывание)
60	0x3C	SERAIL NUMBER1 2 REG	Серийный номер	Серийный номер => 1. символ Симв. (считывание)	Серийный номер => 2. символ Симв. (считывание)
61	0x3D	SERAIL NUMBER3 4 REG	Серийный номер	Серийный номер => 3. символ Симв. (считывание)	Серийный номер => 4. символ Симв. (считывание)
62	0x3E	SERAIL NUMBER5 6 REG	Серийный номер	Серийный номер => 5. символ Симв. (считывание)	Серийный номер => 6. символ Симв. (считывание)
63	0x3F	SERAIL NUMBER7 8 REG	Серийный номер	Серийный номер => 7. символ Симв. (считывание)	Серийный номер => 8. символ Симв. (считывание)
64	0x40	LOC STRNG STRT REG	Текст местоположения		eg65H) + Char(reg65L)
76	0x4C	LOC STRNG END REG	Текст местоположения	+ + Char(reg76H) + (Char(reg76L)

Номер регистра в деся- тичной системе	Номер регистра в 16-ти- ричной системе	Название регистра	Описание	Старший байт	Младший байт
77	0x4D	BASE CONFIG REG	Сведения о базовой конфигура- ции	Congfig Zero => 2. бы => 3 бит, RELAY CAR	> 1. бит 1-вкл 0-выкл, ит, RS485 FLT INHIBIT1 D FLT INHIBIT1 => 4. DUE => 5. бит, BATTERY
78	0x4E	TEST DATE YEAR MONTH	Дата испытания (год/месяц)	Год, целое число	Месяц, целое число
79	0x4F	TEST DATE DATE CYCLE	Дата испытания (День)	День, целое число	
80	0x50	ZERO VAL REG	Нулевое значение	Нулевое значение	
81	0x51	SPAN VAL REG	Диапазон значений	Диапазон значений	
82	0x52	SPAN TEMP REG	Диапазон температуры	Диапазон температ	уры = считывание / 10
83	0x53	CALB CONC VAL REG	Уровень концентрации калибро- вочного газа	Значение концентр ного газа = > считыя (0х29-коэффициен	вание / регистрация
84	0x54	CALB DATE YEAR MONTH	год	Год, целое число	Месяц, целое число
85	0x55	CALB DATE DATE	день	День, целое число	
86	0x56	CALB CYCLE REG	Период калибровочного цикла, месяц	Период калибровочного цикла, месяц	
87	0x57	SECOND SPAN VAL REG	Диапазон значений, с	Диапазон значений, с	
104	0x68	ALRM HYSTERESIS 1 2 REG	А1 Гистерезис	А1 Гистерезис	А2 Гистерезис
105	0x69	ALRM HYSTERESIS 3 REG	АЗ Гистерезис	АЗ Гистерезис	
106	0x6A	PID SEN GAS TYPE	Индекс газа PID	PID регистр 1 = счит	ывание + 1
107	0x6B	SEN SUPPLY VOLTAGE	Напряжение датчика	Напряжения датчик	са (В)= считывание / 10

Таблица 2. Режимы работы газоанализатора

Номер регистра в 16-тиричной системе	Номер регистра в десятичной системе	Обозначение
0x00	0	QUIESCENT
0x01	1	ALARM
0x02	2	WARM_UP
0x03	3	FAULT
0x04	4	INHIBIT
0x05	5	FUNCTIONAL_TEST
0x06	6	CALIBRATION
0x07	7	SETUP

Таблица 3. Тип неисправности газоанализатора

Номер регистра в 16-тиричной системе	Номер регистра в десятичной системе	Код	Описание
0x00	0	NO FAULT	Нет ошибки
OXOD	13	PROGRAM ERR	Ошибка загрузки прошивки
0x10	16	SENSOR ERROR	Датчик находится в неисправном состоянии
0x11	17	NOT CONNECTED	Датчик не подключен или однопроводная связь не работает
0x12	18	SIGNAL OUT RANGE	Сигнал датчика вне допустимого диапазона
0x13	19	TEMPERATURE ERR	Температура вне установленного диапазона
0×14	20	SENSOR_TYPE ERR	Определение типа датчика, считанное с модуля датчи- ка, не соответствует записанному значению конфигу- рации
0x15	21	TIMER ERR	Ошибка таймера ИК-датчика
0x16	22	SENSOR REG ERR	Ошибка напряжения питания датчика
0x17	23	IR LAMP REG ERR	Регулятор лампы ИК-датчика находится в состоянии неисправности и не генерирует сигнал питания лампы
0x18	24	SENSOR SWITCHED OFF	Отключение питания датчика Pellistor из-за превышения диапазона для защиты датчика
0x19	25	SENSOR REGULATOR	Регулятор напряжения датчика вне допустимого диапазона
0x1A	26	SENSOR MODEL ERR	Модель датчика не соответствует настройкам
0x1B	27	SENSOR DATA CRC ERR	Обнаружено повреждение данных датчика
0x1C	28	NEGATIVE DRIFT	Сигнал датчика ниже определенного минимального значения
0X1D	29	SENSOR NTC ERR	Ошибка считывания температуры датчика
0x1E	30	OVERRANGE ERR	Датчик находится в состоянии превышения диапазона
0x20	32	ADC ERR	Цепь АЦП работает неправильно
0x21	33	INT ADC1 ERR	Неправильный уровень внутреннего сигнала АЦП 1
0X22	34	INT ADC2 ERR	Неправильный уровень внутреннего сигнала АЦП 2
0X23	35	EXT ADC ERR	Неправильный уровень внешнего сигнала АЦП
0X24	36	ADC REF ERR	Неправильный уровень исходного сигнала АЦП
0x30	48	CURRENT OUTPUT ERR	Детектор не генерирует аналоговый выходной сигнал
0x31	49	DAC OUTPUT ERROR	Уровень выходного сигнала MCU DAC вне допустимого диапазона
0x32	50	LINE OUTPUT OPEN	Аналоговый токовый выход не подключен
0x33	51	LINE OUPUT SHORT	Аналоговый токовый выход закорочен
0x40	64	SUPPLY VOL ERR	Сбой входной мощности
0x41	65	LOW SUPPLY VOLTAGE err	Входная мощность ниже минимального уровня
0x42	66	HIGH SUPPLY VOLTAGE	Входная мощность выше максимального уровня
0x50	80	PRG RAM ERROR	Обнаружена ошибка ОЗУ
0x51	81	RAM TEST FAILURE	Тест ОЗУ не пройден
0x52	82	STACK OVERFLOW ERR	Ошибка переполнения стека
0x60	96	PRG FLASH ERR	Обнаружена ошибка флэш-памяти

Номер регистра в 16-тиричной системе	Номер регистра в десятичной системе	Код	Описание
0x61	97	FLASH CRC ERR	Данные флэш-памяти повреждены
0x62	98	CRC INIT ERR	Ошибка вычисления CRC
0x63	99	XTRM STNGS CRC ERR	Повреждение параметров основной платы
0x64	100	XTRM USER STNGS ERR	Повреждение пользовательских параметров основной платы
0x70	112	SENSOR EEPROM ERR	Повреждение параметров датчика
0x71	113	SETTINGS CRC ERR	Повреждение параметров передатчика
0x72	114	ONE WIRE ERR	Ошибка связи основной платы и платы датчиков
0x73	115	TYPE CRC ERR	Тип датчика не может быть считан с модуля датчика
0x80	128	DUE DATE ERROR	Определенный тестовый период пройден, требуется выполнение теста
0x81	129	SENSOR CALIB DUE	Определенный период калибровки пройден, необходима калибровка
0x82	130	BUMP TEST DUE	Определенный период функциональной проверки пройден, необходима функциональная проверка
0x90	144	BATTERY ERROR	Батарея находится в неисправном состоянии
0x91	145	BATTERY VOLTAGE LOW	Низкий уровень заряда батареи
0x92	146	NO BATTERY DETECTED	Батарея не установлена
0xA0	160	DETECTOR BASE ERR	Отказ платы передатчика
0xA1	161	DSP COMMM ERR	Ошибка связи дисплея
0xA2	162	RS485 COMMM ERR	Ошибка связи RS485
0xA3	163	RS485 PORT ERR	Ошибка связи порта RS485
0xA4	164	HART PORT ERR	Ошибка связи порта HART
0xB0	176	RELAY CARD ERR	Отказ релейного модуля
0xB1	177	FAULT RELAY ERR	Неисправность реле
0xB2	178	ALARM1 RELAY ERR	Неисправность реле сигнализации-1
0xB3	179	ALARM2 RELAY ERR	Неисправность реле сигнализации-2
0xB4	180	FLT RELAY ERR	Неисправность реле
0xB5	181	AL1 RELAY ERR	Неисправность реле сигнализации-1
0xB6	182	AL2 RELAY ERR	Неисправность реле сигнализации-2
0XC0	192	CPU ERR	Ошибка ЦП
0XC1	193	CPU TEST FAILURE	Сбой теста ЦП
0XD1	209	STACK TEST FAILURE	Сбой теста стека
0XD2	210	STACK OVERFLOW ERR	Ошибка переполнения стека
0XD3	211	FLOW CONTROL ERR	Сбой программного управления потоком
0XE0	224	AMBIENT ERROR	Температура окружающей среды вне установленного диапазона
0XE1	225	HIGH TEMP ERR	Температура выше максимально допустимого уровня
0xE2	226	LOW TEMP ERR	Температура ниже минимально допустимого уровня

Приложение Б. Список газов и диапазоны измерения

Таблица 4. Список газов и диапазон измерения Газоанализаторов IGAS модификации В с термокаталитическим сенсором

№ п/п	Код*	Измеряемый компонент	Диапазон измерения	Единицы измерения
1	NH ₃	Аммиак (NH ₃)	0-100	% НКПР
2	C_2H_2	Ацетилен (C₂H₂)	0-100	% НКПР
3	C ₃ H ₆ O	Ацетон (C₃H ₆ O)	0-100	% НКПР
4	C ₆ H ₆	Бензол (C ₆ H ₆)	0-100	% НКПР
5	C ₄ H ₆	1,3-бутадиен (дивинил) (С ₄ Н ₆)	0-100	% НКПР
6	C ₄ H ₁₀	Бутан (н-бутан) (C ₄ H ₁₀)	0-100	% НКПР
7	C₄H ₉ OH	Бутанол (н-бутанол) (С₄Н ₉ ОН)	0-100	% НКПР
8	i-C₄H ₈	Изобутилен (i-С₄Н ₈)	0-100	% НКПР
9	H ₂	Водород (H ₂)	0-100	% НКПР
10	C ₆ H ₁₄	Гексан (н-гексан) (С ₆ Н ₁₄)	0-100	% НКПР
11	C ₇ H ₁₆	Гептан (н-гептан) (С ₇ Н ₁₆)	0-100	% НКПР
12	0-C ₈ H ₁₀	1,2-диметилбензол (о-ксилол) (о-С ₈ Н₁₀)	0-100	% НКПР
13	m-C ₈ H ₁₀	1,3-диметилбензол (м-ксилол) (m-С $_8$ Н $_{10}$)	0-100	% НКПР
14	p-C ₈ H ₁₀	1,4-диметилбензол (п-ксилол) (р-С ₈ Н ₁₀)	0-100	% НКПР
15	C ₄ H ₈	Бутилен (С₄Н ₈)	0-100	% НКПР
16	C ₃ H ₈ O	Изопропиловый спирт (С₃Н ₈ О)	0-100	% НКПР
17	C2H6O	Диметиловый эфир (С2Н6О)	0-100	% НКПР
18	CH ₄	Метан (СН ₄)	0-100	% НКПР
19	CH₃OH	Метанол (CH₃OH)	0-100	% НКПР
20	C ₈ H ₁₈	Октан (н-октан) (С ₈ Н ₁₈)	0-100	% НКПР
21	C ₅ H ₁₂	Пентан (C ₅ H ₁₂)	0-100	% НКПР
22	C ₃ H ₈	Пропан (С₃Н₃)	0-100	% НКПР
23	C ₃ H ₆	Пропилен (С₃Н₀)	0-100	% НКПР
24	C ₈ H ₈	Стирол (C ₈ H ₈)	0-100	% НКПР
25	CxHy (CH4)	Сумма углеводородов СхНу (по метану)	0-100	% НКПР
26	CxHy (C3H8)	Сумма углеводородов СхНу (по пропану)	0-100	% НКПР
27	CxHy (C ₆ H ₁₄)	Сумма углеводородов СхНу (по гексану)	0-100	% НКПР
28	C ₆ H ₅ CH ₃	Толуол (метилбензол) (С ₆ Н₅СН₃)	0-100	% НКПР
29	C ₆ H ₁₂	Циклогексан (C ₆ H ₁₂)	0-100	% НКПР
30	C ₅ H ₁₀	Циклопентан (С₅Н₁₀)	0-100	% НКПР
31	C ₂ H ₆	Этан (C ₂ H ₆)	0-100	% НКПР
32	C ₂ H ₅ OH	Этанол (этиловый спирт) (C ₂ H ₅ OH)	0-100	% НКПР
33	C ₄ H ₈ O ₂	Этилацетат (С ₄ Н ₈ О ₂)	0-100	% НКПР
34	C ₂ H ₄	Этилен (C ₂ H ₄)	0-100	% НКПР
35	C ₂ H ₄ O	Ацетальдегид (СН3СНО)	0-100	% НКПР
36	C6H12O2	Бутилацетат (С6Н12О2)	0-100	% НКПР
37	C9H20	Нонан (С9Н20)	0-100	% НКПР
38	C4H8O	2-бутанон (С4Н8О)	0-100	% НКПР

 $^{^{*}}$ - химическая формула для условного обозначения (кода) газоанализатора

Таблица 5. Список газов и диапазон измерения Газоанализаторов IGAS модификации В с инфракрасным сенсором

№ п/п	Код*	Измеряемый компонент	Диапазон измерения	Единицы измерения
1	CO ₂	Диоксид углерода (CO ₂)	0-5	% об. д.
2	CO ₂	Диоксид углерода (CO ₂)	0-5000	млн ⁻¹
3	C ₄ H ₆	1,3-бутадиен (дивинил) (С₄Н ₆)	0-100	% НКПР
4	C ₄ H ₁₀	Бутан (н-бутан) (С ₄ Н ₁₀)	0-100	% НКПР
5	C ₆ H ₁₄	Гексан (н-гексан) (С ₆ Н ₁₄)	0-100	% НКПР
6	CH ₄	Метан (СН4)	0-100	% НКПР
7	C ₅ H ₁₂	Пентан (C ₅ H ₁₂)	0-100	% НКПР
8	C ₈ H ₈	Пропан (С₃Н ₈)	0-100	% НКПР
9	CxHy (CH ₄)	Сумма углеводородов СхНу (по метану)	0-100	% НКПР
10	CxHy (C ₃ H ₈)	Сумма углеводородов СхНу (по пропану)	0-100	% НКПР
11	CxHy (C ₆ H ₁₄)	Сумма углеводородов (СхНу) (по гексану)	0-100	% НКПР

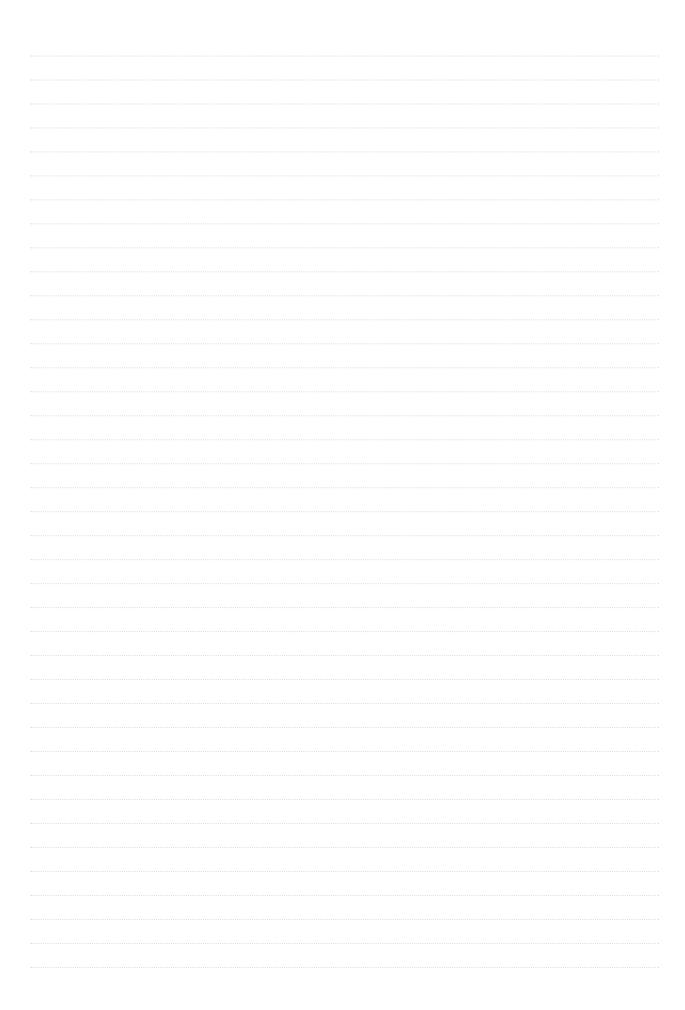

 $^{^{*}}$ - химическая формула для условного обозначения (кода) газоанализатора

Таблица 6. Список газов и диапазон измерения Газоанализаторов IGAS модификации В с электрохимическим сенсором

№ п/п	Код*	Измеряемый компонент	Диапазон измерения	Единицы измерения
1	NH ₃	Аммиак (NH ₃)	0-50	млн ⁻¹
2	NH₃	Аммиак (NH ₃)	0-100	млн ⁻¹
3	NH₃	Аммиак (NH ₃)	0-250	млн ⁻¹
4	NH ₃	Аммиак (NH ₃)	0-1000	млн ⁻¹
5	H ₂	Водород (H ₂)	0-500	млн ⁻¹
6	H ₂	Водород (H ₂)	0-1000	млн ⁻¹
7	H ₂	Водород (H ₂)	0-2000	млн ⁻¹
8	O ₂	Кислород (O₂)	0-25	% об. д.
9	NO ₂	Диоксид азота (NO ₂)	0-30	млн ⁻¹
10	SO ₂	Диоксид серы (SO ₂)	0-10	млн ⁻¹
11	SiH ₄	Моносилан (SiH ₄)	0-1	млн ⁻¹
12	O ₃	Озон (О ₃)	0-1	млн ⁻¹
13	O ₃	Озон (О ₃)	0-5	млн ⁻¹
14	NO	Оксид азота (NO)	0-50	млн ⁻¹
15	NO	Оксид азота (NO)	0-250	млн ⁻¹
16	CO	Оксид углерода (СО)	0-300	млн ⁻¹
17	СО	Оксид углерода (СО)	0-500	млн ⁻¹
18	СО	Оксид углерода (СО)	0-1000	млн ⁻¹
19	H ₂ S	Сероводород (H₂S)	0-20	млн ⁻¹
20	H ₂ S	Сероводород (H₂S)	0-50	млн ⁻¹
21	H ₂ S	Сероводород (H₂S)	0-100	млн ⁻¹
22	H ₂ S	Сероводород (H₂S)	0-120	млн ⁻¹
23	H ₂ S	Сероводород (H₂S)	0-250	млн ⁻¹

N° п/п	Код*	Измеряемый компонент	Диапазон измерения	Единицы измерения
24	H ₂ S	Сероводород (H₂S)	0-500	млн ⁻¹
25	HCN	Синильная кислота (цианистый водород) (HCN)	0-30	млн ⁻¹
26	CH ₂ O	Формальдегид (CH ₂ O)	0-10	млн ⁻¹
27	PH ₃	Фосфин (PH₃)	0-10	млн ⁻¹
28	F ₂	Фтор (F ₂)	0-5	млн ⁻¹
29	HF	Фтороводород (HF)	0-10	млн ⁻¹
30	Cl ₂	Хлор (Cl ₂)	0-10	млн ⁻¹
31	HCI	Хлороводород (HCI)	0-25	млн ⁻¹
33	C ₂ H ₄ O	Этиленоксид (C_2H_4O)	0-20	млн ⁻¹
34	C ₂ H ₄ O	Этиленоксид (C_2H_4O)	0-100	млн ⁻¹
35	AsH ₃	Арсин (AsH₃)	0-1	млн ⁻¹
36	BF ₃	Трифторид бора (BF ₃)	0-10	млн ⁻¹
37	BCl₃	Трихлорид бора (BCl₃)	0-25	млн ⁻¹
38	SiH ₂ Cl ₂	Дихлорсилан (Si H_2Cl_2)	0-25	млн ⁻¹
39	Si ₂ H ₆	Дисилан (Si ₂ H ₆)	0-15	млн ⁻¹
40	GeH ₄	Герман (GeH ₄)	0-5	млн ⁻¹
41	CH ₃ SiH ₃	Метилсилан (CH ₃ SiH ₃)	0-1	млн ⁻¹
42	N ₂ O	Оксид диазота (N₂O)	0-30	млн ⁻¹
43	SiCl ₄	Тетрахлорид кремния (SiCl $_4$)	0-25	млн ⁻¹
44	SiF ₄	Тетрафторид кремния (SiF ₄)	0-10	млн ⁻¹
45	SF ₄	Дифторид серы (SF ₄)	0-10	млн ⁻¹
46	HSiCl ₃	Трихлорсилан (HSiCl ₃)	0-15	млн ⁻¹
47	WF ₆	Фторид вольфрама (WF ₆)	0-10	млн ⁻¹
48	B_2H_6	Диборан (B ₂ H ₆)	0-1	млн ⁻¹
49	HNO ₃	Азотная кислота (HNO ₃)	0-30	млн ⁻¹
50	C ₂ SiH ₈	Диметилсилан (C_2SiH_8)	0-1	млн ⁻¹
51	C₃H₁₀Si	Триметилсилан (SiH(CH₃)₃)	0-15	млн ⁻¹
52	PF ₅	Пентафторид фосфора (PF₅)	0-10	млн ⁻¹
53	CH₃F	Фторметан (CH₃F)	0-10	млн ⁻¹
54	H ₂ Se	Селеноводород (H₂Se)	0-5	млн ⁻¹

^{* -} химическая формула для условного обозначения (кода) газоанализатора

